28 research outputs found

    Cloning and sequence analysis of a vasa homolog in the European sea bass (Dicentrarchus labrax): Tissue distribution and mRNA expression levels during early development and sex differentiation

    Get PDF
    12 pages, 7 figuresVasa is a protein expressed mainly in germ cells and conserved across taxa. However, sex-related differences and environmental influences on vasa expression have not been documented. This study characterized the cDNA of a vasa homolog in the European sea bass, Dicentrarchuslabrax (sb-vasa), a gonochoristic fish with temperature influences on gonadogenesis. The 1911 bp open reading frame predicted a 637-amino acid protein with the eight conserved domains typical of Vasa proteins. Comparisons of the deduced amino acid sequence with those of other vertebrates and invertebrates revealed the highest homology (68–85%) with those of other teleosts. An updated tree with the full-length sequences for Vasa proteins in 66 species belonging to six different phyla was constructed, establishing the evolutionary relationships of Vasa amino acid sequences. European sea bass vasa was highly expressed in gonads with little or no expression in other tissues. Real time RT-PCR quantification of the temporal expression of sb-vasa from early development throughout sex differentiation showed that mRNA levels were high in unfertilized eggs, decreased during larval development and increased again during the period of germ cell proliferation. Rearing of fish at high temperature resulted in further increased sb-vasa levels, most likely reflecting temperature effects on both somatic and gonadal growth. Differences in expression were also found well before sex differentiation and persisted until the end of the first year, with higher levels present in females. These differences in expression demonstrate the implication of vasa during the initial stages of fish sex differentiation and gametogenesis and suggest that, through its helicase activity, it might be implicated in the translational regulation of mRNAs involved in the specification and differentiation of gonadal-specific cell typesThis work was supported by the EU grant PROBASS (Q5RS-2000-31365) to F.P and C.C.M. Research at the lab of F.P. is partially funded by project Consolider ‘‘Aquagenomics” CDS2007-0002. M. Blázquez was supported by a postdoctoral contract from the EU and a Ramón y Cajal contract from the Spanish Ministry of Science and TechnologyPeer reviewe

    Melatonin as an adjuvant to antiangiogenic cancer treatments

    Get PDF
    Melatonin is a hormone with different functions, antitumor actions being one of the most studied. Among its antitumor mechanisms is its ability to inhibit angiogenesis. Melatonin shows antiangiogenic effects in several types of tumors. Combination of melatonin and chemotherapeutic agents have a synergistic effect inhibiting angiogenesis. One of the undesirable effects of chemotherapy is the induction of pro-angiogenic factors, whilst the addition of melatonin is able to overcome these undesirable effects. This protective effect of the pineal hormone against angiogenesis might be one of the mechanisms underlying its anticancer effect, explaining, at least in part, why melatonin administration increases the sensitivity of tumors to the inhibitory effects exerted by ordinary chemotherapeutic agents. Melatonin has the ability to turn cancer totally resistant to chemotherapeutic agents into a more sensitive chemotherapy state. Definitely, melatonin regulates the expression and/or activity of many factors involved in angiogenesis which levels are affected (either positively or negatively) by chemotherapeutic agents. In addition, the pineal hormone has been proposed as a radiosensitizer, increasing the oncostatic effects of radiation on tumor cells. This review serves as a synopsis of the interaction between melatonin and angiogenesis, and we will outline some antiangiogenic mechanisms through which melatonin sensitizes cancer cells to treatments, such as radiotherapy or chemotherapy.Funding: The present study was funded by grants from the Spanish Economy and Competitiveness Ministry (SAF2016-77103-P), from University of Cantabria (Proyectos Puente 2020), and from Instituto de Investigación Sanitaria Valdecilla (IDIVAL) (APG/12)

    Melatonin enhances the apoptotic effects and modulates the changes in gene expression induced by docetaxel in MCF 7 human breast cancer cells

    Get PDF
    Results from clinical trials and multiple in vivo and in vitro studies point to melatonin as a promising adjuvant molecule with many beneficial effects when concomitantly administered with chemotherapy. Melatonin palliates side?effects and enhances the efficacy of chemotherapeutic agents. However, the mechanisms through which melatonin regulates molecular changes induced by chemotherapeutic agents remain largely unknown. In this study, we demonstrated that melatonin enhanced the anti-proliferative and apoptotic responses to low doses of docetaxel in breast cancer cells. Importantly, these effects were more potent when melatonin was added prior to docetaxel. Treatment with 1 µM docetaxel (equivalent to the therapeutic dosage) induced changes in gene expression profiles and melatonin modulated these changes. Specifically, docetaxel downregulated TP53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and cadherin 13 (CDH13), and upregulated mucin 1 (MUC1), GATA binding protein 3 (GATA3) and c-MYC, whereas melatonin counteracted these effects. Melatonin further stimulated the expression of the pro-apoptotic BAD and BAX genes, and enhanced the inhibition of the anti-apoptotic gene BCL-2 induced by docetaxel. The findings of this study suggest that melatonin is a molecule with potential for use as an adjuvant in cancer chemotherapy, which may have implications for designing clinical trials using chemotherapeutic drugs in combination with melatonin.Acknowledgements: The present study was supported by grants from the Spanish Science Technology and Innovation Ministry (grant no. SAF2016 77103-P) and the Research Institute Valdecilla (grant no. APG/12)

    Complementary actions of melatonin on angiogenic factors,the angiopoietin/Tie2 axis and VEGF, in co-cultures of human endothelial and breast cancer cells

    Get PDF
    Melatonin exerts oncostatic activity in breast cancer through antiangiogenic actions. There, the aim of the present study was to ascertain whether melatonin modulates, in a coordinated action, angiopoietin-1 (ANG-1), ANG-2, their cognate Tie2 receptor and VEGF in co-cultures of human endothelial cells (HUVECs) and breast cancer (MCF-7) cells. To accomplish this we used co-cultures of human breast cancer cells (MCF-7) or non-malignant human mammary epithelial cells (MCF?10A) with endothelial cells (HUVECs). The presence of breast cancer cells increased HUVEC proliferation and 1 mM melatonin prevented this effect. ANG-1, ANG-2 and VEGF levels in co-culture media and mRNA expression were upregulated and Tie2 mRNA expression was downregulated in the HUVECs and MCF-7. Melatonin (1 mM) downregulated ANG-1, ANG-2 and VEGF levels in the co-culture media and mRNA expression in both types of cells and upregulated Tie2 mRNA expression in HUVECs. ANG-1, ANG-2, Tie2 and VEGF mRNA expression were not modified during HUVEC/MCF-10A co-culture. Estradiol (10 nM) increased ANG-1, ANG-2 and VEGF mRNA expression in HUVECs and melatonin (1 mM) counteracted this effect. We conclude that melatonin simultaneously coordinates downregulation of angiopoietins with a reduction in VEGF, which could be an effective therapeutic strategy for blocking tumor angiogenesis.The present study was supported by grants from the Spanish Economy and Competitiveness Ministry (SAF2013-42012-P, SAF2016-77103-P), and from the Instituto de Investigación Sanitaria Valdecilla (IDIVAL) (APG/12)

    Melatonin modulation of radiation-induced molecular changes in MCF-7 human breast cancer cells

    Get PDF
    Radiation therapy is an important component of cancer treatment scheduled for cancer patients, although it can cause numerous deleterious effects. The use of adjuvant molecules aims to limit the damage in normal surrounding tissues and to enhance the effects of radiation therapy either killing tumor cells or slowing down their growth. Melatonin, an indoleamine released by the pineal gland, behaves as a radiosensitizer in breast cancer since it enhances the therapeutic effects of ionizing radiation and mitigates side effects on normal cells. However, the molecular mechanisms through which melatonin modulates the molecular changes triggered by radiotherapy remain mostly unknown. Here we report that melatonin potentiated the antiproliferative effect of radiation in MCF-7 cells. Treatment with ionizing radiation induced changes in expression of many genes. Out of a total of twenty-five genes altered by radiation, melatonin potentiated changes in thirteen of them, whereas reverted the effect in another ten cases. Among them, melatonin elevated the levels of PTEN and NME1, whereas counteracted the induction by radiation of SNAI2, ERBB2, AKT, SERPINE1, SFN, PLAU, ATM and N3RC1. We also analyzed the expression of several microRNAs and found that melatonin enhanced the effect of radiation on the levels of miR-20a, miR-19a, miR-93, miR-20b, miR-29a. Rather surprisingly, radiation induced miR-17, miR-141 and miR-15a but melatonin treatment prior to radiation counteracted this stimulatory effect. Radiation alone enhanced the expression of the cancer suppressor miR-34a, and melatonin strongly stimulated this effect. Melatonin further enhanced the radiationmediated inhibition of Akt. Finally, in an in vivo assay, melatonin restrained new vascularization in combination with ionizing radiation. Our results confirm that melatonin blocks many of the undesirable effects of ionizing radiation in MCF-7 cells and enhances changes that lead to optimed treatment resultsAcknowledgments: The present study was funded by grants from the Spanish Economy and Competitiveness Ministry (SAF2016-77103-P), from Universidad de Cantabria (Proyectos Puente 2020) with the participation of the Consejería de Universidades, Igualdad, Cultura y Deporte del Gobierno de Cantabria, and from Instituto de Investigación Sanitaria Valdecilla (IDIVAL) (APG/12)

    Melatonin modulation of crosstalk among malignant epithelial, endothelial and adipose cells in breast cancer (Review)

    Get PDF
    Melatonin, the main secretory product of the pineal gland, is an oncostatic agent that reduces the growth and development of various types of tumors, particularly mammary tumors whose growth is dependent on estrogens. Previous in vivo and in vitro studies point to the hypothesis that melatonin interplays with estrogen signaling pathways at three different levels: i) an indirect mechanism, by interfering with the hypothalamic‑pituitary‑reproductive axis in such way that the level of plasma estrogens synthesized by the gonadal glands are downregulated; ii) a direct mechanism of the pineal gland at the cell cancer level, disrupting the activation of estradiol receptors, therefore behaving as a selective estrogen receptor modulator; and iii) by regulating the enzymes involved in the biosynthesis of estrogens in other tissues, thus behaving as a selective estrogen enzyme modulator. The intratumoral metabolism and synthesis of estrogens, as a result of the interactions of various enzymes, is more important than blood uptake to maintain mammary gland estrogen levels in menopausal females. Additionally, estrogens are considered to play an important role in the pathogenesis and development of hormone‑dependent breast carcinoma. Paracrine interactions among malignant epithelial cells and proximal adipose and endothelial cells, through cytokines and growth factors produced by breast tumor cells, modulate estrogen production at the mammary tumor level and, as a consequence, the genesis and development of mammary tumors. The aim of the present review is to summarize the recent findings describing the mechanisms by which melatonin is able to modulate the crosstalk among malignant epithelial, endothelial and adipose cells in breast cancer

    Melatonin as a Radio-Sensitizer in Cancer

    Get PDF
    Radiotherapy is one of the treatments of choice in many types of cancer. Adjuvant treatments to radiotherapy try, on one hand, to enhance the response of tumor cells to radiation and, on the other hand, to reduce the side effects to normal cells. Radiosensitizers are agents that increase the effect of radiation in tumor cells by trying not to increase side effects in normal tissues. Melatonin is a hormone produced mainly by the pineal gland which has an important role in the regulation of cancer growth, especially in hormone-dependent mammary tumors. Different studies have showed that melatonin administered with radiotherapy is able to enhance its therapeutic effects and can protect normal cells against side effects of this treatment. Several mechanisms are involved in the radiosensitization induced by melatonin: increase of reactive oxygen species production, modulation of proteins involved in estrogen biosynthesis, impairment of tumor cells to DNA repair, modulation of angiogenesis, abolition of inflammation, induction of apoptosis, stimulation of preadipocytes differentiation and modulation of metabolism. At this moment, there are very few clinical trials that study the therapeutic usefulness to associate melatonin and radiotherapy in humans. All findings point to melatonin as an effective adjuvant molecule to radiotherapy in cancer treatment
    corecore